TIME SERIES MINING

Time Series

• A time series is an ordered sequence of *n* real-valued observations $T = (t_1, t_2, ..., t_n), t_i \in \mathbb{R}$

Time Series

- Many time series are recorded at very frequent time scales
- Stock market data
	- Ticker-level
- Purchases online
	- Real time
- What granularity to make forecasts
	- What is required?
	- What level of noise?
- Grocery store: hourly vs. daily

Mining Time Series

- Descriptive / Time series analysis
	- Model time series to determine its seasonal patterns, trends, relations to external factors
- Predictive / Time series forecasting
	- Use information in a time series to forecast future values of that series
	- Two types of forecasting
		- Linear regression user specifies model and estimates time series
		- Smoothing learns patterns from data

Forecasting Single vs Multiple Time Series

- Single
	- Blood pressure
	- Stock market prices
- Multiple
	- Temperature, precipitation, wind speed
	- EKG (Brain waves)
- Typically each series is modeled individually

Predictive Modeling

- Four components:
	- Level
		- Average of the time series
	- Trend
		- Change in one period to the next
	- Seasonality
		- Short-term cyclical behavior
	- Noise
		- Random variation from measurement error or other causes not accounted for

Amtrak Data

- Download the Amtrak data (rail_amtrack_ridership)
- Open a Jupyter Notebook

import pandas import numpy as np from matplotlib import pyplot $data = np.loadtxt('tail_amtrak_ridership.csv',delimiter = ', ' , skiprows = 1, usecols = 1)$ pyplot.plot(data)

Results

Basic Model

- Model time series using linear regression
	- \bullet Given a time series Y
- Assume observations are at fixed intervals
	- Assign numeric value to those observation $t \in T = \{1, 2, ..., N\}$

$$
y_t = \beta_0 + \beta_1 t + \epsilon
$$

- β_0 = Level
- β_1 = Trend
- $\bullet \epsilon$ = Noise

Basic Model on Amtrak Data

 $N = data.shape[0]$

 $t = np.array(list(range(1,N+1)))$

from sklearn.linear_model import LinearRegression

```
y = data.reshape((N,1))
```

```
t = t.reshape((N,1))
```
create basic model

```
reg = LinearRegression()
```

```
reg.fit(t,y)
```

```
y pred = reg.predict(t)
```

```
pyplot.plot(data)
```

```
pyplot.plot(y_pred)
```
Results

Basic Model on Amtrak Data

```
What is the level (\beta_0)?
reg.intercept_
```

```
What is the trend (\beta_1)?
reg.coef_
```

```
What is the noise (\epsilon)?
# SSE
np.linalg.norm(y-y_pred,ord=2)
```
reg.intercept

```
array([1620967.66681724])
```
reg.coef

array([[2738.11837458]])

np.linalg.norm(y-y_pred, ord=2)

2773146.9456016854

Exponential Time Series

- Apply natural logarithm to our target variable (y)
- To transform predictions to original space, take exponent

```
reg = LinearRegression()
reg.fit(t, np.log(y))
y pred = reg.predict(t)
pyplot.plot(data)
pyplot.plot(np.exp(y_pred))
```
Results

What is the noise (ϵ) ?

np.linalg.norm(y-np.exp(y_pred),ord=2)

2737384.085111154

Polynomial Time Series

- Add predictor that is polynomial to t , e.g. t^2
- Build regression model on t and t^2
- Any trend shape can fit, as long as it has a mathematical representation

 $t2 = t*t$

reg = LinearRegression()

```
reg.fit(np.concatenate((t,t2),axis=1),y)
```

```
y_pred = reg.predict(np.concatenate((t,t2)
```

```
pyplot.plot(data)
```

```
pyplot.plot(y_pred)
```
Results

What is the noise (ϵ) ?

np.linalg.norm(y-y_pred,ord=2)

2559328.6732444405

Seasonality

• Amtrak exhibits strong monthly seasonality

- Create a new categorical variable for the season of the observation month = $t \frac{9}{2}$ 12
- Convert categorical variable into dummy variables
	- For m variables, we create m-1 variables

Seasonality

 $month = t \times 12$ # convert to months

```
from sklearn.preprocessing import OneHotEncoder
hot = OneHotEncoder() # create dummy variables
hot.fit(month)
onehot = hot.transform(month)
onehot = onehot.todense()
onehot = onehot[:,:11] # keep m-1 dummy variables
```
Seasonality (cont.)

```
# Build regression model for seasonality
reg = LinearRegression()
reg.fit(onehot,y)
y_pred = reg.predict(onehot)
```
Results

pyplot.plot(data) pyplot.plot(y_pred)

Modeling Trend and Seasonality

• Combine t and t^2 for trend and 11 dummy variables for seasonality

reg = LinearRegression() reg.fit(np.concatenate((t,t2,onehot),axis=1),y) y_pred = reg.predict(np.concatenate($(t,t2,$ onehot), pyplot.plot(data) pyplot.plot(y_pred)

Results

What is the noise (ϵ) ?

np.linalg.norm(y-y_pred,ord=2)

1400365.5781889278

Autocorrelation

- In time series, observations in neighboring periods tend to be correlated
- Autocorrelation correlation between values of a time series in neighboring periods
	- Relationship between time series and itself

• Lagged series – copy of original series that is move forward 1 or more time periods

 $y2 = y$. reshape $((231))$

np.corrcoef(y2[:230],y2[1:231]) # Lag 1

 $y2 = y \cdot \text{reshape}((231,))$ $np.corrcoef(y2[:230], y2[1:231])$

 $array([1.$ $, 0.76584186$, $[0.76584186, 1.$ $11)$

Autocorrelation – Interesting Patterns

• Strong autocorrelation (positive or negative) at a lag $k > 1$

• Typically reflects a cyclical pattern

- Positive lag-1 autocorrelation (stickiness)
	- Consecutive variables move in the same direction

- Negative lag-1 autocorrelation
	- Swings in the series high values are immediately followed by low values

Autocorrelation - Amtrak

 $y2 = y$.reshape $((231))$ $error = []$ for k in range $(1,25)$: error.append(np.corrcoef(y2[:231-k],y2[k:231])[0,1]) pyplot.plot(error)

- Observation: Strong correlation when k = 12, 24, etc.
	- Indicates seasonal pattern

Autocorrelation of residuals

• If we have adequately modeled the seasonal pattern, then residual should show no autocorrelation

 $y2 = y-y$ pred $y2 = y2$.reshape $((231))$ $error = []$ for k in range $(1,25)$: error.append(np.corrcoef(y2[:231-k],y2[k:231])[0,1]) pyplot.plot(error)

Autocorrelation of Residual - Amtrak

- For lag > 1, autocorrelation is low
	- Modeled the seasonality of the data

- Strong positive autocorrelation at lag 1
	- Positive relationship between neighboring residuals

Autoregressive models

- Directly account for autocorrelation in the model
- Similar to linear regression, except predictors are past values of the series

$$
Y_t = \beta_0 + \beta_1 Y_{t-1} + \beta_2 Y_{t-2} + \epsilon
$$

- ARIMA models Autoregressive integrated moving average models
	- Creates larger set of more flexible models
	- Requires more statistical expertise to chose the order of the model

Implementation

• Python package [statsmodels](https://www.statsmodels.org/stable/about.html#about-statsmodels)

conda install anaconda::statsmodels

from statsmodels.tsa.ar_model import AutoReg

Fit an autoregressive model $\log = 1$ model = AutoReg(data, lags=lag) model_fit = model.fit()

Generate predictions based on the autoregressive model y $pred = model$ fit.predict(start=lag, end=len(data)-1)

pyplot.plot(data) pyplot.plot(y_pred)

Results

DATA VISUALIZATION

Visualization

Visualization is the conversion of data into a visual or tabular format so that the characteristics of the data and the relationships among data items or attributes can be analyzed or reported.

- Visualization of data is one of the most powerful and appealing techniques for data exploration.
	- Humans have a well developed ability to analyze large amounts of information that is presented visually
	- Can detect general patterns and trends
	- Can detect outliers and unusual patterns

Example: Sea Surface Temperature

- The following shows the Sea Surface Temperature (SST) for July 1982
	- Thousands of data points are summarized in a single figure

Iris Sample Data Set

- Many of the exploratory data techniques are illustrated with the Iris Plant data set.
	- Can be obtained from the UCI Machine Learning Repository <http://www.ics.uci.edu/~mlearn/MLRepository.html>
	- From the statistician Douglas Fisher
	- Three flower types (classes):
		- Setosa
		- Virginica
		- Versicolour
	- Four (non-class) attributes
		- Sepal width and length
		- Petal width and length

Virginica. Robert H. Mohlenbrock. USDA NRCS. 1995. Northeast wetland flora: Field office guide to plant species. Northeast National Technical Center, Chester, PA. Courtesy of USDA NRCS Wetland Science Institute.

Visualization Techniques: Histograms

- Histogram
	- Usually shows the distribution of values of a single variable
	- Divide the values into bins and show a bar plot of the number of objects in each bin.
	- The height of each bar indicates the number of objects
	- Shape of histogram depends on the number of bins
- Example: Petal Width (10 and 20 bins, respectively)

Two-Dimensional Histograms

- Show the joint distribution of the values of two attributes
- Example: petal width and petal length

- Implementation
- bar3D

Visualization Techniques: Box Plots

- Box Plots
	- Invented by J. Tukey
	- Another way of displaying the distribution of data
	- Following figure shows the basic part of a box plot

Example of Box Plots

• Box plots can be used to compare attributes

Implementation plt.boxplot

Visualization Techniques: Scatter Plots

• Scatter plots

- Attributes values determine the position
- Two-dimensional scatter plots most common, but can have threedimensional scatter plots
- Often additional attributes can be displayed by using the size, shape, and color of the markers that represent the objects
- It is useful to have arrays of scatter plots can compactly summarize the relationships of several pairs of attributes
	- See example on the next slide

Scatter Plot Array of Iris Attributes

Visualization Techniques: Contour Plots

- Contour plots
	- Useful when a continuous attribute is measured on a spatial grid
	- They partition the plane into regions of similar values
	- The contour lines that form the boundaries of these regions connect points with equal values
	- The most common example is contour maps of elevation
	- Can also display temperature, rainfall, air pressure, etc.
		- An example for Sea Surface Temperature (SST) is provided on the next slide

Contour Plot Example: SST Dec, 1998

ax.contourf

Celsius

Visualization Techniques: Matrix Plots

• Matrix plots

- Can plot the data matrix
- This can be useful when objects are sorted according to class
- Typically, the attributes are normalized to prevent one attribute from dominating the plot
- Plots of similarity or distance matrices can also be useful for visualizing the relationships between objects
- Examples of matrix plots are presented on the next two slides

Visualization of the Iris Correlation Matrix

Visualize High-dimensional Data

• T-distributed neighbor embedding (t-SNE) is a dimensionality reduction technique that helps users visualize high-dimensional data sets.

• Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualization similarly to t-SNE

conda install -c conda-forge umap-learn