
TIME SERIES MINING

Time Series

• A time series is an ordered sequence of n real-valued observations
𝑇 = 𝑡1, 𝑡2, … , 𝑡𝑛 , 𝑡𝑖 ∈ ℝ

Time Series

• Many time series are recorded at very frequent time scales

• Stock market data
• Ticker-level

• Purchases online
• Real time

• What granularity to make forecasts
• What is required?

• What level of noise?

• Grocery store: hourly vs. daily

Mining Time Series

• Descriptive / Time series analysis
• Model time series to determine its seasonal patterns, trends, relations to

external factors

• Predictive / Time series forecasting
• Use information in a time series to forecast future values of that series

• Two types of forecasting

• Linear regression – user specifies model and estimates time series

• Smoothing – learns patterns from data

Forecasting Single vs Multiple Time Series

• Single
• Blood pressure

• Stock market prices

• Multiple
• Temperature, precipitation, wind speed

• EKG (Brain waves)

• Typically each series is modeled individually

Predictive Modeling

• Four components:
• Level

• Average of the time series

• Trend

• Change in one period to the next

• Seasonality

• Short-term cyclical behavior

• Noise

• Random variation from measurement error or other causes not accounted for

Amtrak Data

• Download the Amtrak data (rail_amtrack_ridership)

• Open a Jupyter Notebook

import pandas

import numpy as np

from matplotlib import pyplot

data = np.loadtxt('rail_amtrak_ridership.csv',delimiter = ',',skiprows = 1,usecols = 1)

pyplot.plot(data)

Results

Basic Model

• Model time series using linear regression
• Given a time series 𝑌

• Assume observations are at fixed intervals
• Assign numeric value to those observation 𝑡 ∈ 𝑇 = {1, 2, … , 𝑁}

𝑦𝑡 = 𝛽0 + 𝛽1𝑡 + 𝜖

• 𝛽0 = Level

• 𝛽1 = Trend

• 𝜖 = Noise

Basic Model on Amtrak Data

N = data.shape[0]

t = np.array(list(range(1,N+1)))

from sklearn.linear_model import LinearRegression

y = data.reshape((N,1))

t = t.reshape((N,1))

create basic model

reg = LinearRegression()

reg.fit(t,y)

y_pred = reg.predict(t)

pyplot.plot(data)

pyplot.plot(y_pred)

Results

Basic Model on Amtrak Data

What is the level (𝛽0)?

reg.intercept_

What is the trend (𝛽1)?

reg.coef_

What is the noise (𝜖)?

SSE

np.linalg.norm(y-y_pred,ord=2)

Exponential Time Series

• Apply natural logarithm to our target variable (y)

• To transform predictions to original space, take exponent

reg = LinearRegression()

reg.fit(t, np.log(y))

y_pred = reg.predict(t)

pyplot.plot(data)

pyplot.plot(np.exp(y_pred))

Results

What is the noise (𝜖)?

Polynomial Time Series

• Add predictor that is polynomial to 𝑡, e.g. 𝑡2

• Build regression model on 𝑡 and 𝑡2

• Any trend shape can fit, as long as it has a mathematical representation

t2 = t*t

reg = LinearRegression()

reg.fit(np.concatenate((t,t2),axis=1),y)

y_pred = reg.predict(np.concatenate((t,t2),axis=1))

pyplot.plot(data)

pyplot.plot(y_pred)

Results

What is the noise (𝜖)?

Seasonality

• Amtrak exhibits strong monthly seasonality

• Create a new categorical variable for the season of the observation
 month = t % 12

• Convert categorical variable into dummy variables
• For m variables, we create m-1 variables

Seasonality

month = t % 12 # convert to months

from sklearn.preprocessing import OneHotEncoder

hot = OneHotEncoder() # create dummy variables

hot.fit(month)

onehot = hot.transform(month)

onehot = onehot.todense()

onehot = onehot[:,:11] # keep m-1 dummy variables

Seasonality (cont.)

Build regression model for seasonality

reg = LinearRegression()

reg.fit(onehot,y)

y_pred = reg.predict(onehot)

Results

pyplot.plot(data)
pyplot.plot(y_pred)

Modeling Trend and Seasonality

• Combine 𝑡 and 𝑡2 for trend and 11 dummy variables for seasonality

reg = LinearRegression()

reg.fit(np.concatenate((t,t2,onehot),axis=1),y)

y_pred = reg.predict(np.concatenate((t,t2,onehot),axis=1))

pyplot.plot(data)

pyplot.plot(y_pred)

Results

What is the noise (𝜖)?

Autocorrelation

• In time series, observations in neighboring periods tend to be correlated

• Autocorrelation – correlation between values of a time series in neighboring
periods
• Relationship between time series and itself

• Lagged series – copy of original series that is move forward 1 or more time
periods

y2 = y.reshape((231,))

np.corrcoef(y2[:230],y2[1:231]) # Lag 1

Autocorrelation – Interesting Patterns

• Strong autocorrelation (positive or negative) at a lag k > 1
• Typically reflects a cyclical pattern

• Positive lag-1 autocorrelation (stickiness)
• Consecutive variables move in the same direction

• Negative lag-1 autocorrelation
• Swings in the series – high values are immediately followed by low values

Autocorrelation - Amtrak

y2 = y.reshape((231,))

error = []

for k in range(1,25):

 error.append(np.corrcoef(y2[:231-k],y2[k:231])[0,1])

pyplot.plot(error)

• Observation: Strong correlation when k = 12, 24, etc.
• Indicates seasonal pattern

Autocorrelation of residuals
• If we have adequately modeled the seasonal pattern, then residual should

show no autocorrelation

y2 = y-y_pred

y2 = y2.reshape((231,))

error = []

for k in range(1,25):

error.append(np.corrcoef(y2[:231-k],y2[k:231])[0,1])

pyplot.plot(error)

Autocorrelation of Residual - Amtrak

• For lag > 1, autocorrelation is low
• Modeled the seasonality of the data

• Strong positive autocorrelation at lag 1
• Positive relationship between neighboring residuals

Autoregressive models

• Directly account for autocorrelation in the model

• Similar to linear regression, except predictors are past values of the series

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 + 𝜖

• ARIMA models – Autoregressive integrated moving average models
• Creates larger set of more flexible models

• Requires more statistical expertise to chose the order of the model

Implementation
• Python package statsmodels

conda install anaconda::statsmodels

from statsmodels.tsa.ar_model import AutoReg

Fit an autoregressive model
lag = 1
model = AutoReg(data, lags=lag)
model_fit = model.fit()

Generate predictions based on the autoregressive model
y_pred = model_fit.predict(start=lag, end=len(data)-1)

pyplot.plot(data)
pyplot.plot(y_pred)

https://www.statsmodels.org/stable/about.html#about-statsmodels

Results

DATA VISUALIZATION

Visualization

Visualization is the conversion of data into a visual or tabular format so
that the characteristics of the data and the relationships among data items
or attributes can be analyzed or reported.

• Visualization of data is one of the most powerful and appealing techniques
for data exploration.

• Humans have a well developed ability to analyze large amounts of
information that is presented visually

• Can detect general patterns and trends

• Can detect outliers and unusual patterns

Example: Sea Surface Temperature
• The following shows the Sea Surface Temperature (SST) for July 1982

• Thousands of data points are summarized in a single figure

Iris Sample Data Set

• Many of the exploratory data techniques are illustrated with the Iris
Plant data set.
• Can be obtained from the UCI Machine Learning Repository

http://www.ics.uci.edu/~mlearn/MLRepository.html

• From the statistician Douglas Fisher

• Three flower types (classes):

• Setosa

• Virginica

• Versicolour

• Four (non-class) attributes

• Sepal width and length

• Petal width and length

Virginica. Robert H. Mohlenbrock.

USDA NRCS. 1995. Northeast

wetland flora: Field office guide to

plant species. Northeast National

Technical Center, Chester, PA.

Courtesy of USDA NRCS Wetland

Science Institute.

http://www.ics.uci.edu/~mlearn/MLRepository.html

Visualization Techniques: Histograms
• Histogram

• Usually shows the distribution of values of a single variable

• Divide the values into bins and show a bar plot of the number of objects in
each bin.

• The height of each bar indicates the number of objects

• Shape of histogram depends on the number of bins

• Example: Petal Width (10 and 20 bins, respectively)

Two-Dimensional Histograms

• Show the joint distribution of the values of two attributes

• Example: petal width and petal length

• Implementation

bar3D

Visualization Techniques: Box Plots

• Box Plots
• Invented by J. Tukey

• Another way of displaying the
distribution of data

• Following figure shows the basic
part of a box plot

outlier

10th percentile

25th percentile

75th percentile

50th percentile

90th percentile

Example of Box Plots
• Box plots can be used to compare attributes

Implementation
plt.boxplot

Visualization Techniques: Scatter Plots

• Scatter plots
• Attributes values determine the position

• Two-dimensional scatter plots most common, but can have three-
dimensional scatter plots

• Often additional attributes can be displayed by using the size,
shape, and color of the markers that represent the objects

• It is useful to have arrays of scatter plots can compactly summarize
the relationships of several pairs of attributes

• See example on the next slide

Scatter Plot Array of Iris Attributes

Visualization Techniques: Contour Plots

• Contour plots
• Useful when a continuous attribute is measured on a spatial grid

• They partition the plane into regions of similar values

• The contour lines that form the boundaries of these regions connect points
with equal values

• The most common example is contour maps of elevation

• Can also display temperature, rainfall, air pressure, etc.

• An example for Sea Surface Temperature (SST) is provided on the
next slide

Contour Plot Example: SST Dec, 1998

Celsius

ax.contourf

Visualization Techniques: Matrix Plots

• Matrix plots
• Can plot the data matrix

• This can be useful when objects are sorted according to class

• Typically, the attributes are normalized to prevent one attribute from
dominating the plot

• Plots of similarity or distance matrices can also be useful for
visualizing the relationships between objects

• Examples of matrix plots are presented on the next two slides

Visualization of the Iris Correlation Matrix

Visualize High-dimensional Data

• T-distributed neighbor embedding (t-SNE) is a dimensionality reduction
technique that helps users visualize high-dimensional data sets.

• Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction
technique that can be used for visualization similarly to t-SNE

conda install -c conda-forge umap-learn

	Slide 1: Time Series Mining
	Slide 2: Time Series
	Slide 3: Time Series
	Slide 4: Mining Time Series
	Slide 5: Forecasting Single vs Multiple Time Series
	Slide 6: Predictive Modeling
	Slide 7: Amtrak Data
	Slide 8: Results
	Slide 9: Basic Model
	Slide 10: Basic Model on Amtrak Data
	Slide 11: Results
	Slide 12: Basic Model on Amtrak Data
	Slide 13: Exponential Time Series
	Slide 14: Results
	Slide 15: Polynomial Time Series
	Slide 16: Results
	Slide 17: Seasonality
	Slide 18: Seasonality
	Slide 19: Seasonality (cont.)
	Slide 20: Results
	Slide 21: Modeling Trend and Seasonality
	Slide 22: Results
	Slide 23: Autocorrelation
	Slide 24: Autocorrelation – Interesting Patterns
	Slide 25: Autocorrelation - Amtrak
	Slide 26: Autocorrelation of residuals
	Slide 27: Autocorrelation of Residual - Amtrak
	Slide 28: Autoregressive models
	Slide 29: Implementation
	Slide 30: Results
	Slide 31: DATA Visualization
	Slide 32: Visualization
	Slide 33: Example: Sea Surface Temperature
	Slide 34: Iris Sample Data Set
	Slide 35: Visualization Techniques: Histograms
	Slide 36: Two-Dimensional Histograms
	Slide 37: Visualization Techniques: Box Plots
	Slide 38: Example of Box Plots
	Slide 39: Visualization Techniques: Scatter Plots
	Slide 40: Scatter Plot Array of Iris Attributes
	Slide 41: Visualization Techniques: Contour Plots
	Slide 42: Contour Plot Example: SST Dec, 1998
	Slide 43: Visualization Techniques: Matrix Plots
	Slide 44: Visualization of the Iris Correlation Matrix
	Slide 45: Visualize High-dimensional Data

